

Building the foundations of 6G

Prof. Merouane Debbah

merouane.debbah@tii.ae

May 2022

About the Researcher

- Chief Researcher at the Technology
 Innovation Institute
- Professor at CentraleSupelec
- IEEE, EURASIP and WWRF Fellow
- Citations: 50000+, h-index: 100
- More than 20 Best papers Awards
- IEEE Signal Processing Society Distinguished Industry Speaker (2021-2022)
- Field of Research: 5G and beyond and AI

The 3rd Paradigm Shift of Mobile Industry is Going to Happen

5G Capability Requirements Defined by 3GPP

3GPP Standardization Targets for 5G NR

Requirements of Different Services

Source: 3GPP TR 38.913

R15 Enables Ultimate User Experience on eMBB

R15 Builds the Foundation of Commercial 5G Networks

• 5.5G is on the road...

Positioning

C-band/G30/G40 Potentially Global Harmonized as New Bands

2025: Tapping into the Opportunities of Digital Economy Valued at US\$23 Trillion

Standardization Roadmap

The success of 6G remains a single global standard

- ✤ 5G NR will continue evolving to several more use cases effectively
- ✤ 6G will emerge to serve new use cases with fundamental new technologies

6G for what?

- Extremely Immersive Experience
- Haptic: a new dimension of human perception
- Sensing and Imaging
- Industry 4.0 with Connected Intelligence
- Smart Urban Life
- 3D Full coverage of the earth
- Native AI with Communications
- Green and Sustainable development

2030 Key Requirements

Position Accuracy: 50cm outdoor, 1cm indoor

Air Interface Latency:

6G enables a Hyper-connected Intelligent World

All Things Sensing

Sensing the physical world, mapping it to digital signals

Temperature, space, and touch Sense of smell, hearing, and vision

All Things Connected

Data goes online to power machine intelligence

Ubiquitous connections, wide connections, multiple connections, and deep connections

All Things Intelligent

Network integrated AI to power new applications

> Digital twins Digital survival

We Are Entering a Hyper-connected Intelligent World

All Things Sensed

Sensing the physical world, mapping it to digital signals Temperature, space, and touch Sense of smell, hearing, and vision

TII

Better Perception

Naked Eyes

P30 Pro

Air Quality

Blood Pressure

More Information, Better Service & Experience

Convergence of Wireless Transmissions and Sensing

Spatial Dimension

Chemistry

Biology

Terminal Sensing

Infrastructure Sensing

4D City Sensing reconstruction (Traffic control)

Analytics

Core Cloud

Sensing Assisted Transmission

Sensing Assisted PHY

1. Air Interface Relative sensing

2. Reality mapping and Judging

3. Beam Forming tracking

Sensing Assisted Network

1. Environment sensing

2. Infrastructure and traffic reconstruction

3. Network planning and traffic steering

TECHNOLOGY

MM-wave radar Lidar CT MRI Thermal imager THz

Tera-THz Extend the Scope of Sensing

We Are Entering a Hyper-connected Intelligent World

All Things Sensed

Sensing the physical world, mapping it to digital signals Temperature, space, and touch Sense of smell, hearing, and vision

All Things Computed

Network integrated Al to power new applications

Digital twins Digital survival

The Rise of AI: 1989-2019

2019 Turing Award

ті)

The Cost of Understanding

	Device				Edge		Cloud
	Earphone	Always-on	Smartphone	Laptop	IPC	Edge Server	Data Center
Compute	20 MOPS	100 GOPS	1-10 TOPS	10-20 TOPS	10-20 TOPS	10-100 TOPS	200+ TOPS
Power budget	1 mW	10 mW	1-2 W	3-10 W	3-10 W	10-100 W	200+ W
Model size	10 KB	100 KB	10 MB	10-100 MB	10-100 MB	100+ MB	300+ MB
Latency?	< 10 ms	~10 ms	10-100 ms	10-500 ms	10-500 ms	ms ~ s	ms ~ s
Inference?	Y	Y	Y	Y	Y	Y	Y
Training	N	Ν	Y	Y	Y	Y	Y
Chip	Ascend-Nano	Ascend-Tiny	Ascend-Lite	Ascend 310	Multi Ascend		Ascend 910

New Paradigms for Networks

Mobile AI: What is the right architecture?

Unified training and inference framework

New Paradigms for Networks

We Are Entering a Hyper-connected Intelligent World

All Things Sensed

Sensing the physical world, mapping it to digital signals Temperature, space, and touch Sense of smell, hearing, and vision

All Things Connected

Data goes online to power machine intelligence

Ubiquitous connections, wide connections, multiple connections, and deep connections

All Things Computed

Network integrated Al to power new applications

Digital twins Digital survival

Better Connection

Information Everywhere

Holoportation & Edge Intelligence (4.62Tbps)

Autonomous / Flying Transportation (4T/day)

Digital Industry and Robotics (<<1ms)

Smart Communications

Shannon 1.0

Title: Optimal Communication Channels in a Disordered World with Tamed Randomness

Authors: Philipp del Hougne¹*, Mathias Fink¹, Geoffroy Lerosey²

Fig. 1. (**A**) Experimental setup in a disordered cavity under Rayleigh fading conditions. A phasebinary metasurface reflect-array partially covers the cavity walls; appropriately configured, it physically shapes the channel matrix measured between the two antenna arrays and imposes perfect channel orthogonality. (**B**) Iterative optimization of channel diversity. The evolution of R_{eff} over the course of the optimization is given for a single realization, as well as averaged over 30 realizations, for n=2,4,6 (red, blue, yellow). Benchmarks for Rayleigh fading and perfect orthogonality are indicated, see legend.

Smart Channels

Reconfigurable Metasurfaces

Di Renzo et al.

Smart Radio Environments Empowered by Al Reconfigurable Meta-Surfaces: An Idea Whose Time Has Come

Marco Di Renzo^{1*}, Merouane Debbah², Dinh-Thuy Phan-Huy³, Alessio Zappone⁴, Mohamed-Slim Alouini⁵, Chau Yuen⁶, Vincenzo Sciancalepore⁷, George C. Alexandropoulos⁸, Jakob Hoydis⁹, Haris Gacanin¹⁰, Julien de Rosny¹¹, Ahcene Bounceu¹², Geoffroy Lerosey¹³ and Mathias Fink¹¹

From Connected Things to Connected Intelligence

2020

